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ABSTRACT

This paper presents new results obtained at GSFC for

the geocentric coordinates of 72 globally distributed satellite

tracking stations consisting of 58 cameras and 14 lasers. The

observational data for this solution consists of over 65,000

optical observations and more than 350 laser passes recorded

during the National Geodetic Satellite Program (NGSP), the

1968 Centre National d'Etudes Spatiales (CNES)/Smithsonian

Astrophysical Observatory (SAO) Observing Program, and

International Satellite Geodesy Experiment Program (ISAGEX).

Dynamical methods were used. The data were analyzed with the

GSFC GEM and SAO 1969 Standard Earth Gravity Models. The

recent value of GM = 3.986008 x 105 km3/sec 2 derived at the

Jet Propulsion Laboratory (JPL) gave the best results for this

combination laser/optical solution. Comparisons of this new

solution are made with the deep space solution of JPL

(LS-25 solution), results of analysis of lunar laser data

recorded at McDonald Observatory, results obtained at GSFC

from Mariner-9 Unified S-Band tracking, and interferometric

analysis of Apollo Lunar Module tracking data. Comparisons

with other near-earth satellite derived solutions are also

made. Datum transformation parameters relating the North

American, European, South American, Australian and other

datums to this reference system are given, enabling the

positions of some 200 other tracking stations to be placed

in the geocentric system. An uncertainty of the new solution

of 5m (la) in each coordinate is suggested by the comparisons

and an analysis of the error sources.
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1.0 INTRODUCTION

With the advent of artificial satellites, the science

of geodesy was provided with a valuable new means of direct

earth measurement on a global scale. Some 15 years have

passed and in this time, newer instrumentation, computers

and techniques have yielded work of high geodetic value.

Both operational and purely scientific demands have pro-

duced and required information on the size and shape of the

Earth and the geopotential. Many experiments using widely

varying techniques have derived information on the relative

positions of earth based observers, and their locations with

respect to the center of mass. The present level of accuracy

on a global basis is well below ten meters. This paper

presents the results of a global solution for the coordinates

of about 70 tracking stations derived with dynamical techniques

from precision reduced optical and laser observations of

geodetic satellites.

Three recent geodetic satellite observing campaigns

have provided a large amount of laser and precision optical

tracking data. These were the National Geodetic Satellite

Program (NGSP), the 1968 Centre National d'Etudes Spatiales

(CNES) - Smithsonian Astrophysical Observatory (SAO) Observing

Campaign, and the International Satellite Geodesy Experiment

(ISAGEX). Observations recorded during these programs have

been used in combination to compute a new global solution for

the coordinates of the tracking stations.

Results of dynamic adjustment of station coordinates

have been previously reported by the authors (Marsh, Douglas,

Klosko, 1971, 1972). These were based primarily upon pre-

cision reduced camera observations of the GEOS-I and II

flashing lamps. Since the last results were derived, large

amounts of additional NGSP optical data and laser data from the

1



ISAGEX have become available. Also major computer program
improvements have been implemented. The new software pro-
vided the opportunity to combine laser and optical data
with all stations adjusted simultaneously without constraints,
rather than in groups as before. Furthermore, our preliminary
error analysis indicated that a large simultaneous solution
as performed required no initial constraints relating the
stations to the geocenter. To assure this independence from
other solutions, the a priori variances of all station co-
ordinates were taken to be 100,000 m2. The a posteriori variances
from the least-squares adjustement were generally 3m3 or less.

The amount of new data is substantial. In addition to
the laser data, the new solution contains approximately 5000
additional GEOS-I and II camera observations recorded by NGSP
European Observatories. This data set consists of observations
made available to us by the Malvern, Uzhgorod, Delft and
Helsinki Observatories. The laser data contributed additional
precise scale information to the optical solution, and also
provided recovery for two new areas of the world, Guam Island
and Dakar, Senegal.

The NONAME Orbit and Geodetic Parameters Estimation
(Martin, C.F. and O'Neill, 1968) System used previously re-
stricted the maximum number of stations which could be ad-
justed simultaneously to twenty. In order to overcome this
limitation, previous results were derived in a step-wise
fashion. The GEODYN Computer Program System (Martin, T.V.,
1972) used in the present analyses did not contain this
limitation and permitted the simultaneous adjustment of all
stations.

As before, we evaluate our results by making compari-
sons wherever possible with independent results obtained by
other experimenters. A more comprehensive evaluation of results
is now possible through the independent geodetic values derived

2



from; Mariner-9 Unified S-Band tracking data, lunar laser

data recorded at McDonald Observatory, Apollo Lunar Module

tracking data and detailed gravimetric geoid heights based

upon a combination of satellite and surface gravity data

and others. These comparisons are of great significance

because some of the independent solutions for station co-

ordinates are independent of the geopotential.

3



2.0 DESCRIPTION OF SOLUTIONS

Figure 1 shows the geographic locations of the optical

and laser sites which contributed observations for this
solution. Data from BE-C, GEOS-I, GEOS-II, Dl-C and Dl-D
were used in this work. Table 1 presents the values for our
recovered stations referred to elsewhere in this text as
GSFC '73.

The solutions were derived through the use of the
GEODYN program on the GSFC IBM 360/95 computer. GEODYN is
a multiple arc, multiple satellite orbit and geodetic parame-
ter estimation system based upon Cowell type numerical
integration techniques. Model parameters included luni-
solar gravitational perturbations, solar radiation pressure,
BIH polar motion and UTI data, and several different sets
of geopotential coefficients. While the effects of solid
Earth tides are modeled by the program, they were not con-
sidered in this analysis since the potential model solutions
did not account for them.

A total of 150 two-day arcs were used in the final
simultaneous solution. Experience with the GEOS flash ob-
servations and laser data has indicated that two-day arcs are
short enough to accommodate model errors yet long enough to
provide adequate dynamical strength. The dominant error
source for this work was uncertainty in the values of the
12th and 13th order resonant coefficients of the gravitational
model. Resonance produces an orbital perturbation of about
600 meters, primarily along track, on the GEOS satellites
with a period of about six days. Resonance errors on the
order of a few tens of meters were for the most part absorbed
in the two day orbital elements. To further reduce unmodeled
orbital error, passes were selected to be in all directions
on all sides of the stations which lead to favorable cancel-
lation of errors.

4



FIGURE 1. GEOGRAPHIC LOCATION OF TRACKING STATIONS

FOR THE GSFC'73 SOLUTION
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Table 1

GSFC '73 Adjusted Station Coordinates

Standard
Earth Fixed Rectangular Coordinates

Deviation
Station

Name Number X

(M) (M) (M) (M) (M) (M)

1BPOIN 1021 1118044.28 -4876311.20 3942969.13 1.58 1.66 2.13

1FTMYR 1022 807878.54 -5651976.34 2833509.48 0.98 0.74 1.47

1OOMER 1024 -3977283.19 3725645.25 -3302982.36 0.99 0.96 1.39

1SATAG 1028 1769720.15 -5044611.18 -3468254.13 1.24 1.29 1.65

1MOJAV 1030 -2357233.29 -4646330.63 3668317.01 0.90 0.76 1.40

1JOBUR 1031 5084792.27 2670410.49 -2768141.79 0.97 1.14 1.46

1NEWFL 1032 2602772.46 -3419140.86 4697664.13 2.54 4.10 3.31

1COLEG 1033 -2299250.39 -1445693.00 5751809.47 3.56 5.96 4.32

1GFORK 1034 - 521691.57 -4242046.85 4718728.68 0.98 0.84 1.38

1WNKFL 1035 3983118.58 - 48493.59 4964720.04 1.39 1.25 1.73

1ULASK 1036 -2282349.12 -1452644.04 5756898.95 2.55 2.39 3.10

1ROSMN 1037 647538.79 -5177924.35 3656711.95 0.97 0.77 1.44

1ORORL 1038 -4447490.66 2677168.66 -3695059.08 1.35 1.46 1.60

1ROSMA 1042 647531.24 -5177925.13 3656712.41 0.97 0.77 1.44

1TANAN 1043 4091870.67 4434292.77 -2064723.14 1.65 1.58 1.93

1UNDAK 7034 - 521691.57 -4242046.85 4718728.68 0.98 0.84 1.38

1EDINB 7036 - 828475.36 -5657454.18 2816822.13 1.07 0.86 1.57

1COLBA 7037 - 191271.65 -4967275.43 3983264.16 0.95 0.74 1.40

1BERMD 7039 2308235.18 -4873589.40 3394578.32 1.09 1.04 1.62

1PURIO 7040 2465075.10 -5534913.57 1985524.52 1.11 0.99 1.68

1DENVR 7045 -1240461.34 -4760228.83 4048990.72 0.97 0.84 1.44

GODLAS 7050 1130687.92 -4831357.28 3994109.28 1.21 0.83 1.34

WALLAS 7052 1261564.16 -4881571.83 3893172.13 1.36 1.32 1.47
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Table 1 (Continued)-

Standard
Earth Fixed Rectangular Coordinates Deviation

Deviation
Station

Name Number X

(M) (M) (M) (M) (M) (M)

CRMLAS 7054 -2328182.35 5299650.40 -2669473.46 1.77 1.14 1.88

GMILAS 7060 -5068969.11 3584090.31 1458761.92 1.47 1.95 1.72

1JUM24 7071 976287.90 -5601398.33 2880235.06 1.51 1.45 1.99

1JUM40 7072 976291.83 -5601391.98 2880246.34 1.51 1.45 1.99

1SUDBR 7075 692631.93 -4347062.15 4600486.87 1.19 1.11 1.56

1JAMAC 7076 1384177.17 -6905663.00 1966543.85 1.22 1.08 1.75

1CARVN 7079 -2328597.68 5299360.83 -2669665.62 1.77 1.14 1.88

DAKLAS 7820 5886270.08 -1845641.58 1615263.13 2.56 3.74 3.21

DELFTH 8009 3923403.21 299905.17 5002984.93 1.72 1.44 1.88

ZIMWLD 8010 4331308.98 567539.81 4633129.26 1.23 1.31 1.84

MALVRN 8011 3920166.80 - 134710.63 5012735.01 2.34 1.74 2.25

HAUTEP 8015 4578327.29 457994.69 4403201.69 0.74 1.01 1.26

HAULAS 7809 4578347.92 457985.79 4403179.81 0.74 1.01 1.26

HAUTLS 89 4578370.29 457978.93 4403157.43 0.74 1.01 1.26

NICEFR 8019 4579478.08 586629.42 4386427.12 1.40 1.37 1.78

MUDONI 8030 4205641.08 163743.17 4776557.11 2.11 1.76 2.39

10ORGAN 9001 -1535737.62 -5167004.17 3401046.39 1.21 1.12 1.72

10LFAN 9002 5056128.71 2716523.00 -2775768.38 0.83 1.07 1.38

OLILAS 7902 5056126.96 2716522.07 -2775767.42 0.83 1.07 1.38

1SPAIN 9004 5105593.50 - 555216.21 3769676.43 0.70 0.94 1.27

SAFLAS 7804 5105613.60 - 555238.49 3769645.13 0.70 0.94 1.27

SAFLAS 80 5105613.60 -555238.49 3769645.13 0.70 0.94 1.27

1TOKYO, 9005 -3946711.01 3366270.13 3698831.44 2.70 4.27 3.05

1NATOL 9006 1018186.61 5471109.36 3109620.35 2.20 1.96 2.58
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Table 1 (Continued)

Standard
Earth Fixed Rectangular Coordinates

Station _Deviation

Name Number
X Y Z X Y Z
(M) (M) (M) (M) (M) (M)

1QUIPA 9007 1942789.38 -5804078.88 -1796924.28 1.18 0.81 1.54

ARELAS 7907 1942789.54 -5804079.35 -1796924.43 1.18 0.81 1.54

1SHRAZ 9008 3376865.40 4404000.16 3136262.06 3.68 4.04 4.06

1CURAC 9009 2251853.44 -5816914.68 1327172.04 2.76 3.26 3.46

1VILDO 9011 2280592.01 -4914577.49 -3355407.84 1.36 1.21 1.67

1MAUIO 9012 -5466048.05 -2404310.04 2242187.75 1.23 1.27 1.70

HOPKIN 9021 -1936767.24 -5077711.90 3331918.44 1.33 1.05 1.66

HOPLAS 7921 -1936766.10 -5077708.34 3331923.32 1.33 1.05 1.66

AUSBAK 9023 -3977785.39 3725102.02 -3303006.37 0.99 0.96 1.39

DODAIR 9025 -3910455.14 3376332.59 3729216.75 2.70 4.27 3.05

DEZEIT 9028 4903748.22 3965226.77 963868.91 1.83 1.99 2.09

NATALB 9029 5186473.14 -3653859.90 - 654326.87 1.45 1.70 2.03

NATLAS 7929 5186473.65 -3653860.26 - 654326.93 1.45 1.70 2.03

COMRIV 9031 1693806.56 -4112337.96 -4556644.76 1.69 1.91 2.00

AGASSI 9050 1489751.00 -4467467.86 4287310.20 4.15 4.13 4.30

GREECE 9091 4595161.99 2039475.58 3912666.88 1.04 1.17 1.55

GRELAS 7930 4595219.45 2039457.97 3912620.41 1.04 1.17 1.55

COLDLK 9424 -1264826.52 -3466881.64 5185469.29 4.27 5.03 5.32

EDWAFB 9425 -2449996.16 -4624428.96 3635038.09 1.55 1.53 2.15

OSLONR 9426 3121260.13 592666.09 5512723.84 8.23 5.60 7.79

JOHNST 9427 -6007395.09 -1111889.86 1825744.67 2.88 3.40 3.50

RIGALA 9431 3183880.77 1421486.63 5322812.71 1.92 1.41 1.73

UZHGOR 9432 3907413.47 1602446.82 4763922.11 1.45 1.45 1.88

HELSIK 9435 2884532.38 1342146.05 5509530.97 2.92 2.13 2.38
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Table 1 (Continued)

Geodetic Coordinates* Standard Deviation

Station East
Name Number Latitude (Deg, Longitude Height Lat Lon Ht

Min, See) (Deg, Min, (Meters) (Sec) (Sec) (M)
Min, Sec) Sec)

Sec)

1BPOIN 1021 38 25 49.826 282 54 49.027 - 50.26 0.061 0.066 1.93

1FTMYR 1022 26 32 53.336 278 8 4.582 - 36.87 0.046 0.036 0.81

1OOMER 1024 -31 23 25.041 136 52 15.828 123.10 0.044 0.041 0.89

1SATAG 1028 -33 8 58.452 289 19 53.702 705.21 0.052 0.049 1.33

1MOJAV 1030 35 19 47.914 243 5 59.462 886.09 0.043 0.037 0.85

1JOBUR 1031 -25 53 0.900 27 42 26.547 1534.93 0.047 0.041 1.01

1NEWFL 1032 47 44 29.639 307 16 46. 883 67.64 0.088 0.153 4.08

1COLEG 1033 64 52 18.268 212 937.190 156.20 0..121 0.363 5.46

1GFORK 1034 48 1 21.332 262 59 20.064 213.47 0.038 0.047 1.10

1WNKFL 1035 51 26 45.970 359 18 8.895 100.80 0.044 0.065 1.76

1ULASK 1036 64 58 36.948 212 28 31.733 287.51 0.078 0.197 3.05

1ROSMN 1037 35 12 7.330 277 741.756 861.79 0.044 0.039 0.90

1ORORL 1038 -35 37 32.012 148 57 14.927 941.43 0.052 0.054 1.45

1ROSMA 1042 35 12 7.345 277 741.456 861.92 0.044 0.039 0.90

1TANAN 1043 -19 0 31.858 47 17 59.420 1356.32 0.061 0.056 1.64

1UNDAK 7034 48 1 21.332 262 59 20.064 213.47 0.038 0.047 1.10

1EDINB 7036 26 22 46.733 261 40 7.840 20.35 0.049 0.039 0.95

1COLBA 7037 38 53 36.179 267 47 41.417 225.04 0.042 0.039 0.91

1BERMD 7039 32 21 49.787 295 20 35. 615 - 16.84 0.050 0.043 1.12

1PURIO 7040 18 15 28.771 294 0 24.034 - 9.46 0.053 0.039 1.03

1DENVR 7045 39 38 48.065 255 23 39. 119 1759.45 0.042 0.041 1.01

GODLAS 7050 39 1 14.268 283 10 18. 955 2.46 0.044 0.051 0.74

WALLAS 7052 37 51 36.191 284 29 24.506 - 49.68 0.056 0.055 1.00

CRMLAS 7054 -24 54 15.609 113 42 58.681 - 1.46 0.063 0.065 0.92

*ae = 6378155.m, 1/f= 298.255
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Table 1 (Continued)

Geodetic Coordinates* Standard Deviation

Station East
Geodetic

Name Number Latitude (Deg, Longitude Height Lat Lon Ht
min, Seg) (Deg, Min, (Meters) (Sec) (Sec) (M)
Min, Sec) Sec)

Sec)

GMILAS 7060 13 18 33.581 144 44 13.951 126.82 0.055 0.077 0.80

1JUM24 7071 27 1 13.868 279 53 13.092 - 31.04 0.061 0.055 1.60

1JUM40 7072 27 1 14.277 279 53 13.272 - 30.89 0.061 0.055 1.60

1SUDBR 7075 46 27 21.352 279 3 10,907 230.50 0.044 0.056 1.33

1JAMAC 7076 18 4 34.515 283 11 27.437 415.28 0.056 0.042 1.12

1CARVN 7079 -24 54 22.615 113 43 16.381 - 9.46 0.063 0.065 0.92

DAKLAS 7820 14 46 3.458 342 35 28.210 28.69 0.115 0.123 2.21

DELFTH 8009 52 0 6.468 4 22 16.292 56.54 0.053 0.076 1.95

ZIMWLD 8010 46 52 37.225 7 27 54.171 941.68 0.048 0.063 1.63

MALVRN 8011 52 8 36.002 358 1 54.808 145.02 0.058 0.092 2.69

HAUTEP 8015 43 55 57.739 5 42 45.360 691.16 0.040 0.046 0.77

HAULAS 7809 43 55 56.787 5 42 44.871 690.13 0.040 0.046 0.77

HAUTLS 89 43 55 55.780 5 42 44.465 690.14 0.040 0.046 0.77

NICEFR 8019 43 43 32.980 7 17 59.324 415.51 0.052 0.062 1.59

MUDONI 8030 48 48 22.175 2 13 46.696 '205.89 0.059 0.087 2.60

1ORGAN 9001 32 25 24.805 253 26 49.169 1615.84 0.052 0.047 1.24

1OLFAN 9002 -25 57 36.013 28 14 52.626 1558.13 0.045 0.040 0.78

OLILAS 7902 -25 57 36.013 28 14 52.626 1555.92 0.045 0.040 0.78

1SPAIN 9004 36 27 46.764 353 47 37.190 56.48 0.041 0.038 0.71

SAFLAS 7804 36 27 45.516 353 47 36.388 55.88 0.041 0.038 0.71

SAFLAS 80 36 27 45.516 353 47 36.388 55.88 0.041 0.038 0.71

1TOKYO 9005 35 40 22.708 139 32 17.258 78.41 0.112 0.131 3.46

INATOL 9006 29 21 34.473 792727.796 1863.09 0.077 0.081 2.21

1QUIPA 9007 -16 27 56.834 288 30 24.664 2476.01 0.049 0.040 0.83

*ae = 63 78155.m, 1/f = 298.255
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Table 1 (Continued)

Geodetic Coordinates* Standard Deviation

Station East
Name Number Geodetic Longitude Height Lat Lon Ht

Latitude (Deg, (Deg, Min, (Meters) (Sec) (Sec) (M)
Min, Sec) Sec)

ARELAS 7907 -16 27 56.834 288 30 24.664 2476.53 0.049 0.040 0.83

1SHRAZ 9008 29 38 13.786 52 31 12.030 1566.93 0.116 0.139 4.39

1CURAC 9009 12 5 25.109 291 944.992 - 20.72 0.105 0.098 3.28

1VILDO 9011 -31 56 34.777 294 53 36.556 622.71 0.052 0.052 1.28

IMAUIQ 9012 20 42 26.097 203 44 34.433 3040.82 0.054 0.045 1.22

HOPKIN 9021 31 41 2.993 249 7 18.799 2338.61 0.054 0.052 0.98

HOPLAS 7921 31 41 3.191 249 7 18.792 2338.00 0.054 0.052 0.98

AUSBAK 9023 -31 23 25.788 136 52 43.828 131.50 0.044 0.041 0.89

DODAIR 9025 36 0 20.012 139 11 32.248 877.29 0.112 0.132 3.46

DEZEIT 9028 8 44 51.256 38 57 33.837 1897.72 0.068 0.066 1.79

NATALB 9029 - 5 55 40.252 324 50 7.373 28.52 0.066 0.061 1.20

NATLAS 7929 - 5 55 40.252 324 50 7.373 29.14 0.066 0.061 1.20

COMRIV 9031 -45 53 12.463 292 23 9.539 186.85 0.062 0.079 1.98

AGASSI 9050 42 30 21.759 288 26 30.541 131.07 0.126 0.183 4.50

GREECE 9091 38 4 44.567 23 55 59.285 489.38 0.047 0.050 1.10

GRELAS 7930 38 4 42.473 23 55 57.668 496.42 0.047 0.050 1.10

COLDLK 9424 54 44 34.260 249 57 23.234 665.23 0.133 0.234 6.11

EDWAFB 9425 34 57 50.648 242 5 8.202 745.29 0.063 0.062 1.75

OSLONR 9426 60 12 39.545 10 45 4.869 593.98 0.187 0.360 9.74

JOHNST 9427 16 44 38.967 19029 9.707 3.33 0.105 0.108 3.36

RIGALA 9431 56 56 55.437 24 3 32.470 11.11 0.050 0.094 1.92

UZHGOR 9432 48 38 1.831 22 17 55.471 216.12 0.050 0.071 1.79

HELSIK 9435 60 9 43.199 24 57 7.633 41.59 0.080 0.153 2.66

*ae = 6378155. m, 1/f = 298.255
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In order to utilize accurate survey ties between ad-

jacent stations, the coordinates of certain stations were

constrained to adjust in parallel. A list of the constrained

stations is presented in Table 2. It is noted that no other

constraints were employed in the solution since it was felt

that the laser data could be used to reveal systematic dif-

ferences due to the incompatibility of computation parameters

such as scale which might otherwise be obscured. Also, the

optical data provide a direct and absolute measure of latitude

and longitude with proper modeling of UT1 and polar motion.

The goal of the authors was to produce a global solu-
tion with an accuracy of 5 meters in each coordinate. Our
previous work employed the SAO 1969 Standard Earth Gravity Model
which was found to be the best available at that time. Recently,
Lerch, et al. at GSFC (1972) have produced a series of gravity
models (GEM). Our global solution was computed using the GEM1
gravity model modified with the SAO 1969 resonant coefficients and
repeated using the full SAO 1969 model. Generally, the results
using GEM1 gave a more consistent set of recovered stations, a
smaller RMS of fit to the-data and the best overall results. It
is the station solution with GEM1 and the SAO 12th, 13th and 14th

order terms (resonant coefficients) which we have adopted for
the GSFC '73 solution. In Section 3.5 a comparison of the
results obtained with these two gravity models is presented.

A total of 65,000 optical observations and some 350
passes of laser data were used in our final simultaneous
recovery. The NASA and CNES laser data were sampled leaving
from 10 to 20 points per pass where possible. For those systems
with slower data rates, all data available were used. The formal
RMS of fit for this data set after station adjustment is pre-
sented in Table 3.

12



TABLE 2

STATIONS CONSTRAINED TO ADJUST IN PARALLEL

Mt. Hopkin, Arizona 7921-9021

Woomera, Australia 1024-9023

Carnarvon, Australia 7054-7079

Natal, Brazil 7929-9029

Jupiter, Florida 7071-7072

Haute Provence, France 89-7809-8015

Dionysis, Greece 7930-9091

Tokyo, Japan 9005-9025

Rosman, North Carolina 1037-1042

Olifantsfontein, Republic of
South Africa 7902-9002

Arequipa, Peru 7907-9007

San Fernando, Spain 80-7804-9004

13



TABLE 3

RMS OF FIT TO THE DATA FOR STATION SOLUTION

Number of
Observations RMS of Fit

Right Ascension 32122 1.62 seconds of arc

Declination 32301 1.54 seconds of arc

Laser Ranges 7043 4.6 meters

14



The number of observations for each station used in

the solution is presented in Table 4. This fit to the

data demonstrates that the optical data has a noise level

well below 2 seconds of arc.

15



TABLE 4

NUMBER OF OBSERVATIONS BY STATION SELECTED
FOR THE GSFC '73 SOLUTION

STATION STATION
CODE NAME NUMBER NO. OF OBS. CODE NAME NUMBER NO. OF OBS.

1BPOIN 1021 918 GODLAS 7050 1812

1FTMYR 1022 3969 WALLAS 7052 178

[100MER 1024 6241 CRMLAS 7054 214
AUSBAK 9023 2938 1CARVN 7079 194

1SATAG 1028 1234 GMILAS 7060 1078

1MOJAV 1030 4266 1JUM24 7071 202

1JOBUR 1031 2236 1JUM40 7072 976

1NEWFL 1032 148 1SUDBR 7075 1350

1COLEG 1033 230 1JAMAC 7076 1412

1GFORK 1034 2194 DAKLAS 7820 326

1UNDAK 7034 8931 DELFTH 8009 472

1WNKFL 1035 632 ZIMWLD 8010 1290

1ULASK 1036 558 MALVRN 8011 458

1ROSMN 1037 1832 [HAUTEP 8015 8021
1ROSMA 1042 1436 HAUTLS 89 503
10RROL 1038 1186 LHAULAS 7809 1233J
1T.NAN 1043 504 NICEPR 8019 516

1EDINB 7036 2364 MUDONI 8030 236

1COLBA 7037 4168 1ORGAN 9001 1844

1BERMD 7039 1568 [OLFAN 9002 2770
1PURIO 7040 1868 GILLAS 7902 346
1DENVR 7045 3078 1SPAIN 9004 31931
1CURAC 9009 310 LSAFLAS 80;7804 939
1VILDO 9011 1318 1TOKYO 9005 58
IMAUIO 9012 1296 [DODAIR 9025 841
HOPKIN 9021 854 1NATOL 9006 366
[HOPLAS 7921 197] 1QUIPA 9007 1506
DEZEIT 9028 398 [ARELAS 7907 300]
[NATALB 9029 386 1SHRAZ 9008 174
INATLAS 7929 135 COMRIV 9031 508

16



TABLE 4 (Cont.)

STATION STATION
CODE NAME NUMBER NO. OF OBS. CODE NAME NUMBER NO. OF OBS.

AGASS1 9050 156 OSLONR 9426 28 *

GREECE 9091 1322 JOHNST 9427 166

GRELAS 7930 60 RIGALA 9431 660

COLDLK 9424 78 UZHGOR 9432 522

EDWAFB 9425 1026 HELSIK 9435 250

[ - Constrained Stations

* Only 1 pair of observations for each pass was precision reduced.

17



3.0 RESULTS

The final coordinate values are presented in Table 1.

The formal error statistics for a solution of this nature

based upon an analysis of the residuals are usually overly

optimistic due to the fact that they do not consider the presence

of unmodeled error sources. These formal statistics (table 1),

however, do show a recovery to the 1 meter level in most cases.

The goal of this section is to establish a reasonable accuracy

estimate (ascribable to unmodeled error in our solution)

through comparison with other independent solutions.

A brief description of the independent solutions used

as a source of comparison for this paper is presented below:

* Solutions independent of the Earth's gravity

field have been obtained by Mottinger (1969) of

JPL (Deep Space Stations) and by Ryan (1972) of GSFC

(Unified S-Band Stations) for precise distances

from the Earth's spin axis and relative long-

itudes.

* Lunar laser data recorded at McDonald Observatory

was analyzed by Williams, et al (1973) for the recovery

of the distance from the Earth's spin axis.

* Narrow band VLBI techniques have been employed

by Walls and Martin (1972) at GSFC to recover relative

longitudes and spin axis distances for the S-Band

tracking of the Lunar Excursion Module (LEM).

Vincent and Marsh (1973) have produced gravimetric

geoids encompassing most of the northern hemi-

sphere and Australia providing a very accurate

check on station heights.

18



* Geometric solutions based upon a combination

of optical and laser data have been computed

for Europe (Cazenave et al, 1971) and for

North America (Reece et al, 1973). While the

data sets for these solutions are subsets of

our own, geometric procedures are not

influenced by errors in satellite dynamics.

* VLBI techniques by Ramasastry et al (1973) at

GSFC have yielded precise baselines across the

United States.

* Ground based measurements such as surveys are

used to establish a ground truth and an assess-

ment of both systematic scale and local noise

type errors.

* For dynamical satellite geodesy, the recently

published solutions 1973 SAO Standard Earth

by Gaposchkin at SAO (1973) and GSFC GEM4

(Lerch et al, 1972) provide intercomparisons for

solutions using primarily optical and laser

tracking.

The above list is not meant to be all inclusive but

contains solutions which could be readily compared with our

own. A wide variety of experimental techniques and instru-

mentation is sampled for these comparisons.
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3.1 GSFC '73 COMPARISON WITH GEODETIC PARAMETERS RECOVERED
AT JPL FOR THE DEEP SPACE NETWORK AND THE MCDONALD
OBSERVATORY LUNAR LASER EXPERIMENT

In any data analysis effort, evaluation of the results

is one of the most difficult and important tasks. In satellite

geodesy, it is useful to compare the results of several inves-

tigators but in many cases the solutions are not truly inde-

pendent. Fortunately the results of JPL for spin-axis distance

and longitude differences are both highly accurate and are

obtained independently of near Earth satellites.

As noted by Mottinger (1969), DSS data from interplanetary

spacecraft do not yield a complete station position. The well-
determined parameters are the distance of a station from the

Earth's spin axis and the relative longitudes of the stations.

The Earth-fixed Z component of the station position is poorly

determined. Thus complete DSS positions rely on independent

determinations.

In no case is an optical or laser station precisely

contiguous with a DSS site. But in all cases except in Spain
the stations are very close, so close that significant survey
error can generally be regarded as unlikely.

The procedure used to infer optical coordinates from the
DSN solutions follows. The local-to-center of mass shift for
the DSN radar was calculated and then applied to the local
coordinates of the nearby optical sites. In cases where two
cameras are nearby and independently determined, both are
presented. The resulting derived camera coordinates were then
used to calculate spin-axis distances and longitude differences.
A comparison of the spin-axis distances is given in Table 5
for the GSFC '73 and JPL LS25 solutions.
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In previous optical solutions which used the SAO S.E.

1969 gravity model, we found little systematic difference in

the recovered spin-axis distances for the cameras and nearby

JPL radars CMarsh, Douglas, Klosko, 1971). This was probably

due to two factors. First, the SAO station solution of 1969

contained some constraints from the JPL results and we held

SAO information fixed initially in our previous work. Second,

the semi-major axes of the orbital arcs were able to accommodate

an error in GM.

In our recent work we included scale providing laser

data. Also, no a priori station constraints were employed.

These solutions produced spin axis distances which were

systematically larger than those of JPL when using a value

of GM = 3.986013 x 105 km3/sec 2 . However, when GM was

changed to the more recent value of 3.986008 x 105 km3/sec 2

Esposito and Wong, 1972) this disagreement was reduced.

The spin axis results obtained when using the value

of GM = 3.986008 x 105 km3/sec 2 indicated a scale difference
-6 h ipi b

of +0.8 x 10-6 for spin axis distances. The GM implied by

this scale difference would be about 3.986000 x 105 km3/sec 2

Allowing for this scale, the rms difference between JPL and

GSFC '73 is 2.6 meters.

Analysis of laser range measurements to the lunar retro-

reflectors recorded at McDonald Observatory, Ft. Davis, Texas

by the lunar laser group (Williams, et.al., 1972) has yielded

the distance of the observing site from the spin axis of the

Earth with an accuracy of +3 meters. Table 6 presents a

comparison of the lunar laser results and those obtained from

recent optical/laser solutions including GSFC '73. When

the .8 ppm scale factor as determined from the JPL comparison

is subtracted from the GSFC '73 recovery, the agreement with

the lunar laser is 30 cm.
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TABLE 5

COMPARISON OF DISTANCES
FROM THE EARTH'S SPIN AXIS

FOR SITES INFERRED FROM
JPL DSN SOLUTION AND GSFC '73

INDEPENDENT SOLUTIONS

OPTICAL LOCATION OPTICAL CODE JPL STATION SPIN AXIS DISTANCE
NUMBER AX,AY* USED (GSFC '73)-IJPL(LS25)]

FOR INFERRED Meters ppm Ar-(Ar x r)
SOLUTION ppm

GOLDSTONE, CALIFORNIA 1030 DSN12 3.2m .61 -1.0m

EDWARDS AFB, CALIFORNIA 9425 DSN12 6.3m 1.20 2.1m

WOOMERA, AUSTRALIA 9023 DSN41 8.1m 1.49 3.7m

JOHANNESBURG, REP.OF S.AFRICA 1031 DSN51 2.6m .45 -2.0m

OLIFANTSFONTEIN,REP.OF S.AFRICA 9002 DSN51 1.3m .23 -3.3m

ORRORAL, AUSTRALIA 1038 DSN4Z 7.0m 1.35 2.8m

SAN FERNANDO, SPAIN 9004 DSN61 1.6m .31 -2.5m

ar = 0.8
, ippm
AX,AY is difference in surveyed X,Y and JPL recovered X,Y.



TABLE 6

SPIN AXIS DISTANCE FOR THE MCDONALD OBSERVATORY

GSFC '73 5492420.7m

GSFC '73* 5492416.3m

LUNAR LASER 5492416.0m

GSFC GEM4 5492418.3m

SAO '69 5492417.0m

SAO '73 5492413.4m

Modified to account for scale difference of 0.8 ppm as determined from
comparison of GSFC '73 and JPL.



Table 7 presents the longitude differences between JPL
and GSFC '73 after removal of a longitude rotation of 0'27
(z 8 meters at the equator). It is noted that both the
SAO 1969 and an earlier GSFC 1971 solution were rotated in
longitude by about 0?75 with respect to JPL. In our present

solutions using the SAO 1969 Standard Earth Gravity Model
with no a priori information being supplied by SAO station
recoveries, our results rotated into agreement with

JPL longitude. With use of the GEM1 model, a rotation of
0O'27 in longitude again appeared. When this 0'27 rotation
is removed, the rms agreement in longitude is 2.6 meters.
This rotation may be related to least squares accommodation
of tesseral harmonic coefficient error.
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TABLE 7

LONGITUDE DIFFERENCES
FOR SITES INFERRED FROM JPL DSN

SOLUTION AND GSFC '73
INDEPENDENT SOLUTIONS

OPTICAL LOCATION OPTICAL CODE JPL STATION LONGITUDE DIFFERENCE
NUMBER AX* USED FOR (GSFC '73) - IJPL{LS25)]

INFERRED SECONDS OF
SOLUTION ARC METERS

GOLDSTONE, CALIFORNIA 1030 DSN12 0.00 0.0

EDWARDS AFB, CALIFORNIA 9425 DSN12 0711 -2.7

WOOMERA, AUSTRALIA 9023 DSN41 07'.18 4.8

JOHANNESBURG, REP.OF S.AFRICA 1031 DSN51 0.'02 0.6

OLIFANTSFONTEIN, REP.OF S.AFRICA 9002 DSN51 -0'.'03 -0.8

ORRORAL, AUSTRALIA 1038 DSN42 -0.13 -3.3

SAN FERNANDO, SPAIN 9004 DSN61 0.'03 0.75

AX is difference in surveyed longitude and JPL recovered longitude.

A mean longitude rotation of 0'27 has been applied to the GSFC values.



3.2 COMPARISONS WITH USB GEODETIC STATION LOCATIONS
DETERMINED FROM LEM LUNAR SURFACE DATA AND MARINER 9

Martin and Walls with GSFC(Martin & Walls, 1972) have

determined station positions for the Unified S-Band sites of

the Spaceflight Tracking and Data Network (STDN) using metric

data from the Lunar Excursion Module (LEM) while on the moon's

surface. A set of positions were estimated in a combination

solution reducing data from Apollo 14, 15 and 16. The JPL DSN

stations were held fixed in this work and an analysis of the

effects of all significant error sources indicated an accuracy

of 10m for most stations for longitude and spin axis parameters.

Frequency biases were the dominant errors except for those

stations with hydrogen maser data - Bermuda, Merritt Island

and Hawaii - for which residual refraction effects were the

dominant errors. Narrow band VLBI was used for their recovery

making the results virtually independent of the Earth's GM and

errors in the lunar ephemeris.

Table 8 presents a comparison of the spin axis distances

for the LEM solution and GSFC '73. The AX, AY and AX parameters

from the LEM recovered S-Band sites and the S-Band local surveys

were used to derive nearby optical coordinates. Independent

optical sites, in the case of Maryland - three such independent

sites, are each transformed using the S-Band results. These

inferred values are then compared with GSFC '73. Martin and

Walls indicated in their published parameter uncertainties that

their poorest determinations were at Guam and Carnarvon. The

larger differences noted at Guam and Carnarvon are therefore

not surprising. Merritt Island and Hawaii, which were indicated

t~ have good recoveries, show differences with GSFC '73 which

are unexpectedly large. As will be shown later, possible errors

exist in the survey ties between the S-Band radar and camera

sites.
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TABLE 8

COMPARISON OF DISTANCES
FROM THE EARTH'S SPIN AXIS

FOR SITES INFERRED FROM NARROW BAND

VLBI TRACKING OF THE LUNAR

EXCURSION MODULE AND GSFC '73
INDEPENDENT SOLUTIONS

OPTICAL/LASER LOCATION OPTICAL/LASER S-BAND RADAR ASPIN AXIS DISTANCE

CODE NUMBER AX,AY* USED (GSFC '73) - (LEM)
FOR INFERRED METERS

SOLUTION Ar Ar-(Ar xr)

FORT MYERS, FLORIDA 1022 USB1 (MERRITT ISL.) 11.7m 7.1m

JUPITER, FLORIDA 7072 USB1 (MERRITT ISL.) 16.1m 11.6m

BLOSSOM POINT, MARYLAND 1021 USB16 (GSFC) - 0.7m - 4.7m

GSFC, MARYLAND 7050** USBl6 (GSFC) - 6.3m -10.3m

WALLOPS ISLAND, VIRGINIA 7052** USB16 (GSFC) -11.5m -15.5m

BERMUDA 7039 USB3 (BERMUDA) 1.lm - 3.2m

CARNARVON, AUSTRALIA 7054** USB8 (CARNARVON) 12.1m 7.Sm

GUAM 7060** USB9 (GUAM) 10.9m 5.9m

MAUI, HAWAII 9012 USB11 (KAUAI, HAWAII) -13.5m -18.3m

EDINBURG, TEXAS 7036 USB14 (CORPUS CHRISTI) - 4.5m 9.1m

*AX,AY is difference in survey X,Y and recovered S-Band X,Y.

**
NASA lasers

&A is the scale of .8 ppm determined from GSFC/JPL comparisons.



Table 9 presents a comparison of the longitudes derived

from the LEM solutions with those of GSFC '73. Again, Hawaii

shows a large disagreement. The agreement elsewhere is .very

good with an RMS of 5.0 meters.

Ryan at GSFC (Ryan, 1972) used data recorded during

Mariner-Mars 1971 Unified S-Band Tracking and Calibration

Experiment by the S-Band sites of the STDN to recover spin-

axis distances and relative longitudes. The Deep Space

Network supported this experiment. The DSN locations were

held unadjusted in Ryan's work at the LS-25 values. Using

3-way USB doppler data with corresponding 2-way DSN doppler

data, Ryan recovered values using least squares regression

analysis. Ryan places 15m as an upper bound for error in

his work.

Table 10presents a comparison of spin axis distances

for Ryan and GSFC '73. Contrary to Martin and Walls, Ryan

indicates that he had good spin-axis recoveries at Guam and

Carnarvon. Here we find good agreement with GSFC '73.

Elsewhere the agreement with Ryan is only slightly different

than that of the LEM solution with Merritt Island and Hawaii

continuing to show large differences.

Table 11 presents a comparison with the Mariner 9

solution for longitude. While Hawaii and Merritt Island

show large disagreement, the Mariner 9 solution for ETC

(GSFC) also seems to be inconsistent with both the LEM and

the GSFC '73 recovery. Ryan indicated that ETC was a known

poor determination.
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TABLE 9

LONGITUDE DIFFERENCES
FOR SITES INFERRED FROM NARROW BAND

VLBI TRACKING OF THE LUNAR
EXCURSION MODULE AND GSFC '73

INDEPENDENT SOLUTIONS

OPTICAL/LASER LOCATIONS OPTICAL/LASER S-BAND RADAR LONGITUDE DIFFERENCE
CODE NUMBER AX* USED FOR (GSFC '73)*- (LEM)

INFERRED SECONDS OF
SOLUTION ARC METERS

FORT MYERS, FLORIDA 1022 USB1 (MERRITT ISL.) 0'00 0.Om

JUPITER, FLORIDA 7072 USB1 (MERRITT ISL.) 0.'13 3.6m

BLOSSOM POINT, MARYLAND 1021 USBl6 (GSFC) -0.'32 -7.7m

GSFC, MARYLAND 7050** USB16 (GSFC) -0.22 -5.7m

WALLOPS ISLAND, VIRGINIA 7052** USBl6 (GSFC) 0.04 1.0m

BERMUDA 7039 USB3 (BERMUDA) 0.02 0.5m

CARNARVON, AUSTRALIA 7054** USB8 (CARNARVON) 0.'13 3.7m

GUAM 7060** USB9 (GUAM) 0733 9.9m

MAUI, HAWAII 9012 USB11 (KAUAI, HAWAII) 0751 14,7m

EDINBURG, TEXAS 7036 USBl4 (CORPUS CHRISTI07.'12 -3.3m-

AX is difference in surveyed longitude and LEM recovered longitude

**
NASA laser

*The S-Band solution is consistent with JPL. The GSFC '73/JPL rotation
of 0.27 was therefore applied in this comparison.



TABLE 10

COMPARISONS OF DISTANCES
FROM THE EARTH'S SPIN AXIS FOR

SITES INFERRED FROM THE DYNAMICAL S-BAND
SOLUTION USING DATA FROM MARINER 9

AND THE GSFC '73 INDEPENDENT SOLUTIONS
SPIN AXIS DISTANCE
(GSFC '73) - (RYAN)

OPTICAL/LASER LOCATION OPTICAL/LASER S-BAND RADAR AX,AY* METERS ,
CODE NUMBER USED FOR INFERRED Ar Ar-(Ar X r)

SOLUTION ppm

FORT MYERS, FLORIDA 1022 USB1 (MERRITT ISL.) 11.3 6.7m

JUPITER, FLORIDA 7072 USB1 (MERRITT ISL.) 15.9 11.4m

BLOSSOM POINT, MARYLAND 1021 USB16 (GSFC) 9.4 5.4m

GSFC, MARYLAND 7050** USB16 (GSFC) 3.8 - 0.2m

WALLOPS ISLAND, VIRGINIA 7052** USBl6 (GSFC) -1.0 - 5.0m

BERMUDA 7039 USB3 (BERMUDA) 1.9 - 2.4m

CARNARVON, AUSTRALIA 7054** USB8 (CARNARVON) 3.8 - 0.8m

GUAM 7060** USB9 (GUAM) 6.5 1.5m

MAUI, HAWAII 9012 USB11 (KAUAI, HAWAII) -16.3 -21.0m

EDINBURG, TEXAS 7036 USB14 (CORPUS CHRISTI) 8.9 4.3i

AX,AY is difference in survey X,Y and Mariner 9 recovered S-Band X,Y.

NASA lasers



TABLE 11

LONGITUDE DIFFERENCE
FOR SITES INFERRED FROM THE DYNAMICAL

S-BAND SOLUTION USING DATA FROM MARINER 9
AND THE GSFC '73 INDEPENDENT SOLUTIONS

OPTICAL/LASER LOCATION OPTICAL/LASER S-BAND RADAR LONGITUDE DIFFERENCE

CODE NUMBER AA* USED FOR (GSFC '73)*- (RYAN)
INFERRED SECONDS OF
SOLUTION ARC METERS

FORT MYERS, FLORIDA 1022 USBi (MERRITT ISL.) 0.34 9.5

JUPITER, FLORIDA 7072 USBi (MERRITT ISL.) 0.47 13.0

BLOSSOM POINT, MARYLAND 1021 USB16 (GSFC) 0.'41 10.0

GSFC, MARYLAND 7050** USB16 (GSFC) 0751 12.3

WALLOPS ISLAND, VIRGINIA 7052** USB16 (GSFC) 0.'77 18.8

BERMUDA 7039 USB3 (BERMUDA) 0.'02 0.5

CARNARVON, AUSTRALIA 7054** USB8 (CARNARVON) 0'17 4.8

GUAM 7060** USB9 (GUAM) 0.'21 6.3

MAUI, HAWAII 9012 USB11 (KAUAI, HAWAII) 0757 16.4

EDINBURG, TEXAS 7036 USB14 (CORPUS CHRISTI) 0.05 1.4

AX is difference in surveyed longitude and Mariner 9 recovered longitude.

NASA laser

*The S-Band solution is consistent with JPL. The GSFC '73/JPL rotation

of 0'27 was therefore applied in this comparison.



Table 12 presents four optical/laser solutions

compared with these two S-Band solutions for spin-axis

distance at Hawaii and Merritt Island, Note that while the

two independent S-Band solutions agree very well, so too,
do the optical solutions agree! In Florida the optical

stations are on the mainland while the USB station is off

the coast. In the case of Hawaii, the S-Band and Baker-

Nunn camera are located on different islands. The close

agreement for solutions measuring their respective instru-

ments seemingly indicates questionable survey ties between

the S-Band radars and cameras at these locations.
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TABLE 12

COMPARISON OF DISTANCES
FROM THE EARTH'S SPIN AXIS

FOR FLORIDA AND HAWAII

INFERRED SPIN AXIS DISTANCE* RECOVERED SPIN AXIS DISTANCE*
UNIFIED S-BAND SOLUTIONS OPTICAL/LASER SOLUTION

LOCATION CODE MARTIN RYAN GSFC GEM4 SAO SAO
NUMBER (LEM) (MARINER 9) '73 '72 '69 '73

FLORIDA 7072 820.5 820.7 836.6 832.4

1022 410.7 411.1 422.4 425.5

9010 826.0 826.2 845.6 842.4 833.2

HAWAII 9012 478.0 480.8 464.5 464.6 457.7 470.1

Last three digits of values .in meters.



3.3 EVALUATION OF RADIAL POSITIONS

The relative longitude and spin axis distance compari-

sons presented in the preceding section provide an excellent

means of assessing the precision of the geocentric X and Y

coordinate values of the solution. This precision has been

shown to be a very few meters. These comparisons are in-

sensitive to the Z values however. Systematic errors as

large as five meters can occur in Z due to errors in zonal

harmonics (Anderle 1973). Other errors are also present,

primarily due to uncertainties in modeling tesseral and

sectorial harmonics. Errors in Z will be propagated into

errors in the heights above the reference ellipsoid for

stations not on the equator.

Gravimetric geoids have been used to evaluate the

radial coordinates of our solution. On a global basis we

have used the geoid corresponding to the GSFC GEM-4 gravity

field (Marsh et al, 1973). Comparisons of this global

geoid with detailed gravimetric geoids indicated that the

accuracy is generally on ~he order of five to ten meters.

In the areas of North America, Europe and Australia,

the detailed gravimetric geoid (Vincent and Marsh, 1973)

based upon a combination of surface gravity data and satellite

data has been used. The accuracy of the detailed geoid has

been assessed as about 2 meters.
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Figure 2 presents a plot of Ah where

Ah = (hel - hmsl) - N

versus station latitude where:

hel is the height of the station above the

reference ellipsoid

hms1  is the height of the station above mean

sea level obtained from survey data

and

N represents the GEM-4 global geoid heights.

Thus the differences presented in the Figure 2 represent the

sum of errors in the dynamically determined height, the survey

height above mean sea level and the satellite geoid height.

The RMS difference for this comparison is 5.6 meters, after

removal of a systematic difference. This systematic differ-

ence is due to the difference in semi-major axes used for

the geoid heights (6378142m) and the reference figure for

the recovered station coordinates (6378155m). This result

agrees well with Mueller (1973) and Lerch (1972) who both

indicated that a reference ellipsoid of 6378155m is too

large by at least 10m. This plot indicates no significant

slope in the residuals as a function of latitude which means

that displacement of the origin of the coordinate system

along the Z axis must be less than a few meters.
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Figure 3 presents a comparison of the station heights

in North America, Europe and Australia versus the detailed

gravimetric geoid heights. The overall RMS difference for

these three areas is 4.1 meters, reflecting the increased

accuracy of the detailed geoid over the global satellite

geoid. The ellipsoid implied by this more accurate comparison

would have a semi-major axis of 6378142+2m. It is also im-

portant to note that no significant scale differences are

indicated for these areas. This indicates that a

small value as an upper bound exists in the systematic

error in MSL definition for these three continents.

Both noise and systematic errors in the Z coordinates

are assessed to be less than 4m RMS for the GSFC '73 solu-

tion.
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FIGURE 2. GEOID HEIGHT COMPARISON BETWEEN GSFC'73 AND THE GEM4 SATELLITE GEOID
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FIGURE 3. GEOID HEIGHT COMPARISON FOR GSFC '73 AND THE GRAVIMETRIC GEOID
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hms1 = Survey height of station above mean sea level.

N = Detailed gravimetric geoid height (Vincent and Marsh, 1973)



3.4 INTERCOMPARISON OF CHORD DISTANCES ON THE NORTH
AMERICAN AND EUROPEAN DATUMS

This section presents a chord distance comparison of

the GSFC '73 solution with; the geometric satellite solutions

of Reece et al, 1973 for North America, Cazenave et al, 1972,

for Europe and the VLBI solution of Ramasastry et al, 1973.

Simultaneous observations of the GEOS-1 and II flashing

lamps taken by the NASA MOTS and SPEOPT cameras were used

by Reece et al to recover relative coordinates of thirteen

sites on the North American Datum. Scale for this solution

was provided by processing laser data from Greenbelt and

Wallops Island simultaneously with the optical data. The

GSFC '73 solution also provided coordinates for these stations.

Figure 4 presents a histogram of the chord distance agreement

between the geometric and dynamic solutions. Of the 77 common

chords, 63 agree to 5 meters or better.

A seven parameter transformation (3-translation,

3-orientation, 1-scale) was performed to relate the respec-

tive GSFC '73 and Reece station sets to a common coordinate

system. The overall scale difference recovered was -0.17

ppm. This agreement is very good considering the different

techniques employed. Table 13 presents the residuals in X,Y,Z

by station between the geometric and dynamic solutions from

this orientation solution.
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FIGURE 4.
HISTOGRAM OF NORTH AMERICAN CHORD AGREEMENT BETWEEN

THE REECE GEOMETRIC AND GSFC'73 DYNAMIC SOLUTIONS
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TABLE 13

RESIDUALS BY STATION
IN METERS BETWEEN THE GEOMETRICAL
SOLUTION OF REECE AND GSFC '73

STATION

NAME NUMBER X Y Z

1MOJAV 1030 0.4 -0.7 1.3

1BPOIN 1021 -0.6 -0.3 -8.5

1EDINB 7036 -0.9 2.7 0.0

1COLBA 7037 1.6 0.7 -0.3

1BERMD 7039 -3.7 2.1 4.2

1PURIO 7040 -1.2 -2.3 4.4

1DENVR 7045 -1.2 -1.2 2.8

1SUDBR 7075 -2.0 2.1 2.3

1JAMAC 7076 2.0 0.9 -2.5

1FTMYR 1022 1.6 0.9 0.2

1JUM40 7072 1.0 -4.4 -6.7

1GFORK 1034 0.8 2.3 1.0

1ROSMA 1042 2.1 -2.8 1.8

RMS of Fit 1.7m 2.1m 3.7m
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Wideband noise signals from quasars have been analyzed

by Ramasastry et. al. (1973) using Very Long Baseline Inter-

ferometric (VLBI) techniques to provide a baseline from the

Rosman, North Carolina 85 foot antenna to the Goldstone,

California 40 foot antenna with a standard deviation of

14 cm. Local survey ties between the cameras and radar

antennas at the respective stations have been used to infer

a baseline from the GSFC '73 dynamical solution. The

difference between the VLBI and dynamically derived baseline

as shown in Table 14 is 70cm.

At Centre National d'Etudes Spatiales (CNES) in France

Cazenave and her associates (1971) used purely geometric

techniques with optical and laser data to recover the chord

distances between San Fernando, Spain and eight other sites

in Europe.

Table 15 compares the chord lengths obtained from

GSFC '73 with the geometric solution of CNES. The agreement

between GSFC and CNES is good, 6 of the 8 chords agreeing to

4.5 meters. The disagreement of the chord to Greece may be due

to the fact that this station is on the periphery of the geo-

metric net and therefore is constrained in only limited direc-

tions in the CNES solution. However, the mean difference

between the CNES and GSFC '73 results, including Greece, is

still only a few meters. When Greece is eliminated the mean

scale difference between GSFC '73 and CNES is 0.3 ppm.

The GSFC '73 dynamical solution when compared with

these independent geometrical solutions of Reece and

Cazenave and the VLBI solution of Ramasastry indicates

agreement to better than 5 meters in almost all cases.

This is consistent with our error analysis which indicated

that the recovered coordinates for GSFC '73 on North America

and Europe are accurate to 3m (la) in each coordinate.
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TABLE 14

Agreement With Survey for the Chotd from
Rosman, N.C. and Goldstone, California

Satellite-Survey

VLBI (Ramasastry) = 7.4m

GSFC 1973 = 8.1m

GSFC 1973 - VLBI = 0.7m



TABLE 15

COMPARISON OF CHORD DISTANCES FROM
STATION 9004 (SAN FERNANDO, SPAIN)
AND THE EUROPEAN DATUM OF 1950*

STATION NUMBER SURVEY- SURVEY GSFC - CNES
SAT (m) SAT (ppm) (m) (ppm)

CNES GSFC '73 CNES GSFC '73

UZHGOR 9432 -20.5 -22.5 -7.7 -8.5 -2.0 -0.8

RIGALA 9431 -21.5 -14.9 -6.8 -4.7 6.6 2.1

GREECE 9091 -26.1 -12.6 -9.8 -4.7 13.3 5.1

NICEFR 8019 -14.7 -12.7 -10.5 -9.1 2.0 1.4

HAUTEP 8015 -16.8 -17.9 -12.9 -13.7 -1.'1 -0.8

MALVRN 8011 -12.2 - 8.3 -6.9 - 4.7 3.9 2.2

ZIMWLD 8010 -17.6 -19.8 -10.8 -12.2 -2.3 -1.4

1DELFT 8009 -6.5 -10.8 -3.3 - 5.6 -4.3 -2.3

*The local survey values are based upon the 1971 Bomford geoid.



3.5 COMPARISONS WITH THE GLOBAL STATION SOLUTIONS OF SAO

1973 AND GEM 4

In the last year, two major solutions for global laser

and camera coordinates have been published. Lerch et al (1972)

at GSFC published a set of station coordinates simultaneously

recovered with the GEM 4 gravity model. Gaposchkin at SAO

(Gaposchki4 1973) solved for a global set of station coordinates

in an iterative process along with the recent SAO Standard

Earth III gravity model. This section will assess the level

of agreement between our GSFC '73 determination and these

values.

The accuracy of global station coordinate values de-

rived using dynamical techniques varies.In a least squares deter-

mination of orbital position larger errors normally occur

over areas with limited or no tracking for near earth satel-

lites. Therefore, the isolated stations with limited data sets

result in the poorest determinations. In order to more realistical-

ly assess the difference between the GSFC '73 solution and the

GEM 4 and SAO '73 values, seven stations with known larger

position uncertainties were omitted from the analysis.

The GEM-4 solution used the value of GM = 3.986013 X

105 km3/sec2 . In order to compare these values with our own,

an orientation solution of seven parameters was computed for

34 independent common stations. Table 16 presents the results

from this solution. The scale difference of .46 ppm is very

close to the expected value since the GSFC '73 solution used

a value of GM = 3.986008 X 105 km3/sec 2 . The translation para-

meters, AX, AY, and AZ, are 50 cm of less in each case. A

rotation of about 0.3 arc seconds in longitude is noted. The

RMS of fit for the 34 stations as shown in Table 16 indicates

agreement to better than 5 meters between GSFC '73 and GEM 4.

This agreement is especially significant in that GEM 4 used

a different technique than GSFC '73 by solving for a gravity
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TABLE 16

ORIENTATION SOLUTION
BETWEEN THE GLOBAL GEOCENTRIC
SOLUTIONS OF GEM4 AND GSFC'73

FOR 34 COMMON STATIONS

AX AY AZ Ak omega psi epsilon
meters meters meters ppm arc sec arc sec arc sec

-0.5+0.2 -0.1+0.2 0.5+0.2 0.45 0.26 0'11 0101
+.03 +.01 +.01 +.01

CORRELATION COEFFICIENTS

AX
AY .12 AY
AZ -.019 ,757 AZ
AP -.140 .415 -T742 AY
omega .426 .194 .073 .467210-1 6 omega
psi .236 -.079 -.259 -.186X10 -1 8 -. 21 si
epsilon .015 -.303 -.495 -.124X10 -1 5  -.067 i

RMS of Fit X Y Z
3.8 meters 4.3 meters 3.6 mjters
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model complete with zonals simultaneously with the station

coordinates and a different gravity model was employed (GEM 1

vs. GEM 4).

A similiar analysis was performed using 24 common

stations of GSFC '73 and SAO '73. Here the differences were

larger. The RMS of fit for the 24 stations was 8.9, 10.5,

and 13.4 meters in X, Y, and Z respectively. A comparison

of the SAO '73 solution with respect to geoid height, indicated

a 25 meter discrepancy between the recovered heights in Europe

and those of North America and Australia. This discrepancy

largely accounts for the larger differences between GSFC '73

and SAO '73.

A comparison using this method was also performed to

assess the effect of gravity model error on our solution. A

seven parameter orientation solution was performed for 50 in-

dependent stations determined using the GEM 1 and Standard

Earth 1969 Gravity Model. Table 17 presents the parameter

values derived for this orientation solution. This comparison

indicates a longitude rotation of 0.35 arc seconds as was

discussed in Section 3.1. This method also would reveal other

systematic discrepancies between the different gravity model

solutions. The scale recovered in this transformation solution

was a very small -.06 ppm. Except for the rotation in longi-

tude (omega), systematic difference between the solutions were

less than 3 meters. The RMS of fit between these two sets of

50 stations was 3.8, 2.8, and 3.4 meters in X, Y, and Z re-

spectively.

Table 18 presents final uncertainty estimates for our

GSFC '73 recovered stations based upon error analyses and

comparisons performed in this section. For most sites, an

accuracy of 5m (la) in each coordinate is quoted.
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TABLE 17

AN ORIENTATION
SOLUTION BETWEEN
GSFC'73 SOLUTIONS

USING DIFFERENT GRAVITY
MODELS*

AX AY AZ Ak omega psi epsilon
Ppm

3.0+..2 -1.8+.2 1.36+.2 -.06+ -0'.'35+ 0'.'07+ 0'.'09+
.02 .01 .01 .07

*the gravity models used were the S.E 1969 and GEM1 models.
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TABLE 18

ESTIMATED UNCERTAINTY
IN THE GSFC '73 STATION

SOLUTION

STATIONS NUMBER UNCERTAINTY IN METERS
IN EACH COORDINATE

1021 1BPOIN 5
1022 1FTMYR 3
1028 1SATAG 5
1030 1MOJAV 3
1031 1JOBUR 3
1032 1NEWFL 7
1033 1COLEG 10
1034 1GFORK 3
1035 1WNKFL 3
1036 1ULASK 5
1038 1ORROL 5
1042 1ROSMA 3
1043 1TANAN 5
7036 1EDINB 3
7037 1COLBA 3
7039 1BERMD 3
7040 1PURIO 3
7045 1DENVR 3
7050 GODLAS 3
7052 WALLAS 7
7054 CRMLAS 5
7060 GMILAS 7
7072 1JUM40 3
7075 1SUDBR 3
7076 1JAMAC 3
7820 DAKLAS 10
8009 DELFTH 3
8010 ZIMWLD 3
8011 MALVRN 5
8015 HAUTEP 3
8019 NICEFR 3
8030 MUDONI 5
9001 1ORGAN 3
9002 1OLFAN 3
9004 1SPAIN 3
9005 1TOKYO 7
9006 1NATOL 7
9007 1QUIPA 3
9008 1SHRAZ 10
9009 ICURAC 7
9011 1VILDO 3
9012 1MAUIO 3
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TABLE 18 (CONT.)

STATIONS NUMBER UNCERTAINTY IN METERS
IN EACH COORDINATE

9021 HOPKIN 3
9023 AUSBAK 3
9028 DEZEIT 5
9029 NATALB 5
9031 COMRIV 5
9050 AGASSI 7
9091 GREECE 3
9424 COLDLK 10
9425 EDWAFB 3
9426 OSLONR 10
9427 JOHNST 10
9431 RIGALA 3
9432 UZHGOR 3
9435 HELSIK 5
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4.0 THE RELATION OF MAJOR GEODETIC DATUMS TO A GEOCENTRIC
REFERENCE SYSTEM

The relation of the North American Datum 1927, the

European Datum-1950, the Provisional South American Datum-

1969, and the Australian Geodetic Datum to the geocentric

reference system of the GSFC '73 solution has been estab-

lished through the derivation of values for seven trans-

formation parameters (three translation, three rotation

and scale) for each datum. For the Arc Datum, the two

available stations have been used to derive the translation

of the datum.

Survey coordinates were obtained primarily from

the "NASA Directory of Observation Station Locations" (1971).

The survey coordinates for the optical and laser stations

located at Haute Provence, France, were obtained in a

private communication with Brachet, 1973, of CNES.

4.1 THE NORTH AMERICAN DATUM-1927

A total of 14 stations, 12 continental and the island

stations of Jamacia and Puerto Rico have been used to es-

tablish the orientation of the North American Datum 1927

(NAD) to a geocentric reference system established by our

GSFC '73 dynamical solution. Table 19 presents values

for the seven orientation parameters, their correlation

coefficients, associative residuals in X,Y and Z, and

chord length differences. The scale difference indicates

that the North American Datum is smaller than the geocen-

tric solution by 0.9 + 0.2 ppm. This value is in good

agreement with the 0.8 ppm derived from the GSFC '73 JPL

spin axis distance comparison. The residuals in X,Y, and

Z have RMS values of 3.4, 2.6 and 3.8 meters respectively.
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TABLE 19

THE ORIENTATION AND CHORD LENGTH AGREEMENT FOR THE
NORTH AMERICAN 1927 DATUM WITH GSFC '73

TRANSFORMATION PARAMETERS FOR THE NORTH AMERICAN
1927 DATUM AND THE GEOCENTRIC REFERENCE SYSTEM

9021 7.4 8 CHORD LENGTH AGREEMENT BETWEEN THE NORTH
X AY Z t OMEGA PSI EPSILON 9001 27 4.3 AMERICAN 1927 DATUM AND GSFC'73 (SATELLITE-

ZOM PSi7 EPSILO.5 1.8 SURVEY) IN METERS
-42.7 + 1 161.6 + 1 179.0 + 2 .9 ppm - -'2 -'05 7076 0.5 1.8 -2.7

+.2 + .04 + .04 + .07 7075 7.4 8.9 8.9 10.8

7072 -3.6 9.1 4.9 -5.6 16.1

7050 5.6 0.8 0.7 5.3 -2.4 15.2 -

7045 4.3 8.2 10.0 2.3 0.9 8.6 -5.0 '

7040 -7.5 -1.6 -5.4 -2.6 5.2 -10.1 7.6 -2.6

7037 -0.9 4.7 2.6 -1.1 7.5 5.7 -3.8 0.7 -5.3

7036 6.8 1.3 -5.0 1.7 9.1 6.1 4.5 3.6 -2.1 -0.5

7034 0.9 7.0 8.0 1.5 -3.1 8.0 -9.3 -1.1 -3.3 2.9 2.6

1042 -4.0 6.6 3.5 -1.5 11.2 4.5 3.6 3.3 -6.9 1.8 2.8 3.1 -

CORRELATION COEFFICIENTS 1030 8.7 2.0 7.7 4.0 7.9 11.3 2.0 7.4 0.6 6.2 3.3 7.7 8.1 2
AX 1021 -7.8 -1.2 -3.6 -1.2 9.2 1.8 13.0 -5.2 -3.5 -5.2 -4.1 -3.2 -6.2 0.4

A Y .209 AY
AZ .248 .453 A Z

60 -
BA .007 .579 -. 337 At RESIDUALS BY STATION FOR NORTH AMERICAN

1927 DATUM ORIENTATION SOLUTION 55 -
OMEGA .849 .184 .224 -. 37x10 - 15  OMEGA STATION RESIDUALS IN METERS

PSI .624 .131 .160 -.24x10
- 15  .170 PSI NAME NUMBER X Y Z 50 -

14 HOPKIN 9021 1.4 -2.2 3.0 45
EPSILON -. 266 -. 795 -. 929 .17x10

- 4  -. 241 -. 166 H1PKIN 9021 1.4 -2.2 3.0
1ORGAN 9001 -1.3 4.2 3.7 40
1SUBBR 7075 -0.6 -4.2 -6.1
1JUM40 7072 -3.6 3.9 5.1 35-

GODLAS 7050 4.2 -4.7 -7.1 30
1DENVR 7045 -3.0 -1.6 -3.6
IPURIO 7040 6.8 0.5 -0.6 25 -

1COLBA 7037 -1.6 1.9 2.0 O
1EDINB 7036 1.1 1.2 -1.5 20
1UNDAK/1GFORK 7034 -3.9 1.7 -1.6 15
IROSMA 1042 -2.6 1.0 2.7
1MOJAV 1030 2.2 -1.6 0.7 10
18POIN 1021 5.0 1.0 5.3
1FTMYR 1022 -4.2 -1.0 -2.1 5

RMS OF FIT 3.4m 2.6 m 3.8m 0
0 5 10 15 20 25 30

METERS OFAGREEMENT
HISTOGRAM OF CHORD AGREEMENT
BETWEEN NORTH AMERICAN 1927 DATUM
AND GSFC 73



4.2 THE EUROPEAN DATUM-1950

Nine stations have been used in relating the European

Datum to this global reference system. Table 20 presents

information similar to that presented in Table 19 for the

North American Datum. The comparison of our solution with

that of CNES indicated a mean scale difference of 0.3 ppm

for chords to San Fernando, Spain. The overall scale dif-

ference derived in the seven parameter solution was 5.0 +

0.4 ppm. This large scale difference is primarily attributed

to the fact that the European Datum contains a systematic

scale error due to the unavailability of the geoid heights

throughout this system at the time of its reduction in

1950 (Bomford, 1971). The values used for the surveyed

chords in the chord length comparison and histogram in

Table 20 have been modified to account for this error.

After correction, 23 out of a total of 36 chords show

differences of 5 meters or less.

The residuals in X,Y,Z have RMS values of 3.0, 3.6

and 4.3 meters, respectively.

4.3 THE PROVISIONAL SOUTH AMERICAN DATUM-1969

Five stations tied to the Provisional South American

Datum were used in the study of this datum. A scale dif-

ference of -1.8 + 0.2 ppm was derived for this datum.

Curacao was omitted from the analysis since chords from

this station to Natal, Brazil and Arequipa, Peru were

different from survey values by -16.1 meters and 21.7

meters, respectively. However, the differences between

our values and those of GEM-4 and SAO '69 were on the order

of a few meters. The residuals in X,Y,Z for this datum
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TABLE 20

THE ORIENTATION AND CHORD LENGTH AGREEMENT FOR THE EUROPEAN 1950
DATUM WITH GSFC '73

TRANSFORMATION PARAMETERS FOR THE EUROPEAN
1950 DATUM AND THE GEOCENTRIC REFERENCE SYSTEM

AX AY Z OMEGA PS EPSILON CHORD LENGTH AGREEMENT BETWEEN THE
X Y Z MEGA PSI EPSILON CORRECTED EUROPEAN 1950 DATUM AND

n GSFC '73 (SATELLITE-SURVEY) IN METERS

-149.0 + 3 -103.0 + 3 -92.5 + 3 5.0 ppm 0:' 60- -1:'9 0:' 65 9432 13.3 m
+.4 +.08 + .12 + .08

9091 1.7 1.1 "

9004 2.6 17.2 3.9 =

CORRELATION COEFFICIENTS 8030 -1.8 12.2 3.1 8.9
AX 8019 -1.5 10.9 2.4 7.9 0.7 E

8015 -4.2 4.8 -2.1 13.5 -1.5 -3.7 a;
AY .023 AY
Ay .023 AY 8010 -0.1 5.8 0.8 15.5 2.1 5.5 1.0
AZ -.481 -0.60 AZ

8009 -0.8 15.2 6.7 5.6 -1.1 2.8 -2.5 0.1
A2. --.488 -. 073 -. 512 A,

OMEGA -. 111 .758 .024 -. 60x10 - 16  OMEGA

PSI .863 .049 -. 849 -. 13x10 - 14  -. 045 PSI

EPSILON -. 089 -. 769 .173 .60x10 - 1 5  -. 190 -. 120

25 -
RESIDUALS BY STATION FOR EUROPEAN 1950
DATUM ORIENTATION SOLUTION 20 -

STATION RESIDUALS IN METERS
NAME NUMBER X Y Z 15 -

UZHGOR 9432 0.8 -5.1 1.3 O 10 -

GREECE 9091 1.2 5.5 0.3 5 -

1SPAIN 9004 -0.0 4.2 4.3

MUDONI 8030 -5.5 -1.6 -5.5 0 10 15 20 25 30

NICEFR 8019 -3.3 0.5 -4.3 METERS OF AGREEMENT

ZIMWLD 8010 1.8 -4.0 -5.1
HISTOGRAM OF CHORD LENGTH AGREEMENT

DELFTH 8009 0.8 3.6 3.8 BETWEEN THE CORRECTED EUROPEAN 1950
DATUM AND GSFC'73

1WNKFL 1035 -1.2 10.4 7.4

HAUTEP 8015 5.5 -3.5 -2.1

RMS OF FIT 3.0 m 3.6 m 4.3 m



TABLE 21

THE ORIENTATION AND CHORD LENGTH AGREEMENT FOR THE
PROVISIONAL SOUTH AMERICAN 1969 DATUMWITH GSFC 73

RESIDUALS BY STATION FOR PROVISIONAL
TRANSFORMATION PARAMETERS FOR THE PROVISIONAL SOUTH AMERICAN DATUM ORIENTATION SOLUTION
SOUTH AMERICAN DATUM AND THE GSFC '73 GEOCENTRIC
REFERENCE SYSTEM STATION RESIDUALS IN METERS CHORD LENGTH AGREEMENT BETWEEN THE

NAME NUMBER X Y Z PROVISIONAL SOUTH AMERICAN DATUM AND
AX AY AZ Ak OMEGA PSI EPSILON COMRIV 9031 -4.4 1.3 3.0 GSFC 73 (SATELLITE-SURVEY) IN METERS

-44.1 + 2 8.0 + 2 -46.4 + 2 -1.8 ppm 0:' 74 -0:'25 0:28
NATALB 9029 -1.8 -2.7 -1.5

+ .2 + .08 + .05 + .08 o

1VILDO 9011 -1.6 5.9 3.2 2
9031 5.5 '

1QUIPA 9007 -0.8 1.3 9.9 9029 -9.7 -7.6 -

1SATAG 1028 8.6 -5.7 -14.7 9011 2.1 -1.7 -1.8

CORRELATION COEFFICIENTS RMS OF FIT 4.6 m 4.0 m 8.2 m 9009 -2.9 9.8 -16.1 9.0 5
9007 -21.8 -12.1 -1.2 -11.2 21.7

c AX

AY .484 A Y

A Z -. 424 -. 564 AZ

6A -. 295 .481 .276 6 30 -

OMEGA .858 .762 -. 571 .97x10- 15  OMEGA 25 -

PSI -. 150 .241 -. 532 .24x10- 15  .211 PSI 20 -

EPSILON .481 .774 -. 897 .93x10 - 1 5  .629 .298 15

u. 10 -

u 5 -

0
0 5 10 15 20 25 30

METERS OF AGREEMENT

HISTOGRAM OF CHORD LENGTH AGREEMENT
BETWEEN PROVISIONAL SOUTH AMERICAN
DATUM AND GSFC'73



are somewhat larger than those for the two previously con-

sidered datums with RMS values of 4.6, 4.0 and 8.2 meters,

respectively. Table 21 presents these results.

4.4 AUSTRALIAN GEODETIC DATUM AND THE ARC DATUM

Only three separate locations were available for

comparison in Australia. Table 22 presents the results

for the AGD. The translation and orientation parameter

values showed high correlations as might be expected due

to the small number of stations. The correlation co-

efficients for scale were in general less than 0.3,

therefore it is concluded that the scale difference of

1.9 + 0.4 ppm is a well determined value.

Translation parameters are presented below for the

two stations on the Arc Datum which were independently

adjusted in our solution.

AX AY AZ

Johannesburg, Rep. of S.Africa -124.2 m. -108.8 -296.2

Olifantsfontein, Rep.of S.Africa -125.2 -107.8 -300.8

Comparison of the satellite derived chord connecting

these two stations with the surveyed value indicated a dif-
ference of 1.9 meters.
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TABLE 22

THE ORIENTATION AND CHORD LENGTH AGREEMENT FOR
THE AUSTRALIAN GEODETIC DATUM WITH GSFC '73

CHORD LENGTH AGREEMENT BETWEEN THE
AUSTRALIAN GEODETIC DATUM AND GSFC'73

TRANSFORMATION PARAMETERS FOR THE (SATELLITE-SURVEY) IN METERS
AUSTRALIAN GEODETIC DATUM AND THE
GSFC'73 GEOCENTRIC REFERENCE SYSTEM

Ax AY AZ At OMEGA PSI EPSILON 7054 5.2 1

-137.2 + 15 -49.5 + 5 155.0 + 21 1.9 ppm 0:'34 0:'18 0:'38 9023 -3.5 .7
+.4 + .26 + .64 +.54

CORRELATION COEFFICIENTS

AX

AY -. 833 AY RESIDUALS BY STATION FOR AUSTRALIAN
GEODETIC DATUM ORIENTATION SOLUTION

AZ -. 979 .840 AZ

At. .095 -. 326 .060 At.
STATION RESIDUALS IN METERS

OMEGA -. 969 .711 .944 .117x10 - 13  OMEGA NAME NUMBER X Y Z

PSI -. 988 .839 .993 .118x10 - 13  .943 PSI CRMLAS 7054 -1.3 -0.4 -0.2

EPSILON -. 974 .877 .992 .120x10- 13  .939 .980 O1RROL 1038 -2.0 -1.7 -0.7

AUSBAK 9023 3.3 2.1 0.9

RMS OF FIT 2.4 m 1.6 m 0.7 m



4.5 DATUM TRANSLATION VALUES FOR OTHER AREAS OF THE WORLD

Figures 5, 6, and 7 present rectangular co-

ordinate differences (satellite-survey) for the stations

considered in the GSFC '73 solution. These tables provide

the capability for other investigators to quickly place

instrument locations for which local surveys are available

into our geocentric reference system for 10 independent

geodetic datums. In this way, geocentric positions of

better than 10m accuracy can be readily obtained for over

200 additional tracking stations throughout the world.

58



FIGURE 5. THE TRANSLATION PARAMETERS FOR THE X COORDINATES

BETWEEN GSFC73 AND THE LOCAL SURVEYS
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FIGURE 6. THE TRANSLATION PARAMETERS FOR THE Y COORDINATES

BETWEEN GSFC 73 AND THE LOCAL SURVEYS

(SATELLITE--SURVEY) IN METERS
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FIGURE 7. THE TRANSLATION PARAMETERS FOR THE Z COORDINATES

BETWEEN GSFC 73 AND THE LOCAL SURVEYS

(SATELLITE-SURVEY) IN METERS
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